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A premixed ducted flame, burning in the wake of a bluff-body flame-holder, is
considered. For such a flame, interaction between acoustic waves and unsteady
combustion can lead to self-excited oscillations. The concept of a time-invariant
turbulent flame speed is used to develop a kinematic model of the response of the flame
to flow disturbances. Variations in the oncoming flow velocity at the flame-holder
drive perturbations in the flame initiation surface and hence in the instantaneous rate
of heat release. For linear fluctuations, the transfer function between heat release and
velocity can be determined analytically from the model and is in good agreement
with experiment across a wide frequency range. For nonlinear fluctuations, the model
reproduces the flame surface distortions seen in schlieren films.

Coupling this kinematic flame model with an analysis of the acoustic waves gen-
erated in the duct by the unsteady combustion enables the time evolution of distur-
bances to be calculated. Self-excited oscillations occur above a critical fuel–air ratio.
The frequency and amplitude of the resulting limit cycles are in satisfactory agreement
with experiment. Flow reversal is predicted to occur during part of the limit-cycle
oscillation and the flame then moves upstream of the flame-holder, just as in exper-
imental visualizations. The main nonlinearity is identified in the rate of heat release,
which essentially ‘saturates’ once the amplitude of the velocity fluctuation exceeds its
mean. We show that, for this type of nonlinearity, describing function analysis can
be used to give a good estimate of the limit-cycle frequency and amplitude from a
quasi-nonlinear theory.

1. Introduction
In order to meet stringent emission requirements, combustors are increasingly being

designed to operate in a premixed mode. Although this is beneficial as far as reducing
NOX is concerned, it has the disadvantage that premixed flames are particularly
susceptible to self-excited oscillations and many premixed systems have experienced
structural damage caused by combustion instability.

One of the simplest generic geometries is that of a confined premixed turbulent
flame burning in the recirculation zone of a bluff body or rearward-facing step.
Such configurations have been investigated extensively (see for example, Yamaguchi,
Ohiwa & Hawegawa 1985; Sivasegaram & Whitelaw 1987; Schadow, Wilson & Gut-
mark 1988; Hedge, Reuter & Zinn 1988; Langhorne 1988; Sivasegaram, Thompson
& Whitelaw 1989; Ahmed & Nejad 1992) and have been used as a model of the
afterburner of an aeroengine. The ducted flame is unstable above a critical fuel–air
ratio (Langhorne 1988) and linear disturbances grow into a periodic finite-amplitude
limit cycle. These self-excited oscillations involve coupling between unsteady combus-
tion and acoustic waves in the duct. Essentially, the velocity fluctuations associated
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with acoustic waves in the duct perturb the flame and change the instantaneous
rate of heat release. Since these fluctuations in heat release rate generate sound,
the acoustic waves can gain energy from their interaction with the unsteady com-
bustion (Rayleigh 1896). If this energy gain exceeds that lost on reflection at the
ends of the duct, linear acoustic waves grow in amplitude until limited by nonlinear
effects.

When predicting combustion oscillations it is crucially important to be able to
describe the response of the rate of heat release to flow perturbations. Bloxsidge,
Dowling & Langhorne (1988) investigated this experimentally by exciting a stable
confined flame with weak harmonic sound waves. Their geometry consists of a circular
duct in which the flame is stabilized in the wake of an axisymmetric centre-body. They
found that the unsteady burning was determined principally by velocity fluctuations
at the flame-holder, and gave an empirical form for the relationship between linear
fluctuations in heat release rate and flow velocity. They expressed this relationship
in an appropriate non-dimensional form and used it to develop a linear stability
analysis for a flame burning in a duct. The Bloxsidge et al. theory predicts frequencies
and mode shapes which are in good agreement with Langhorne’s (1988) low-Mach-
number experimental data. This theory was subsequently applied successfully to flows
with higher inlet Mach numbers (Macquisten & Dowling 1993) and more complex
geometries (Macquisten & Dowling 1995). The Bloxsidge et al. flame model has also
been applied to other burner geometries with some success (Ohtsuka et al. 1998).
But since this model is empirical, it is not able to explain how velocity fluctuations
at the flame-holder cause unsteady burning. Flow visualizations show that, during
unstable combustion, large-scale distortions occur in the flame front, which lead to
time variations in the heat release rate (Smart, Jones & Jewel 1976; Pitz & Daily
1981; Keller et al. 1982; Smith & Zukoski 1985; Sterling & Zukoski 1987; Poinsot et
al. 1987; Yu, Trouvé & Daily 1991; Schadow & Gutmark 1992). Similar effects are
seen in the numerical simulations of Kailasanath et al. (1991), Menon & Jou (1991),
and Brookes, Cant & Dowling (1999).

Bloxsidge et al. (1998) give a complicated form for the transfer function between
the perturbations in the rate of heat release and the flow velocity at the flame-holder.
However, as noted by Dowling (1997), this expression is well approximated by a
simple first-order lag law over the frequency range of the experimental data. Fleifil
et al. (1996) have used the concept of a constant flame speed to investigate a pre-
mixed laminar flame in a duct, burning inwards from a ring on the duct wall. They
find analytically that the heat release rate for linear disturbances is again related to
the velocity fluctuation by a first-order lag law. In § 2 we use the same approach
to investigate a turbulent flame stabilized on a centre-body. For linear harmonic
velocity fluctuations, the location of the flame surface can be calculated analytically.
As in the calculations by Boyer & Quinard (1990), the flame becomes wrinkled with
short-wavelength waves travelling along it. We find that a model in which the rate
of heat release is related to the wrinkled flame surface area leads to a predicted
transfer function in close agreement with the Bloxsidge empirical form. However,
linear theory is not sufficient to investigate self-excited oscillations, since then the flow
velocity and rate of heat release experience large changes in amplitude. Indeed flow
reversal is observed during part of the oscillation cycle (Langhorne 1988), implying
velocity perturbations exceed the mean. This is accompanied by large fluctuations
in heat release rate, with burning almost extinguished at times (see for example
Macquisten & Dowling 1993, figure 4). The kinematic flame model is extended to
nonlinear oscillations in § 2.2. Then the flame surface is predicted to undergo large-
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Figure 1. Geometry of the flame-holder and flame initiation surface.

scale distortions, which are reminiscent of the motion seen in schlieren films (Jones
1974) and still photographs (e.g. Smart et al. 1976). The flame model can be used to
investigate the effect of this nonlinearity on the rate of combustion. It confirms the
assumption made by Dowling (1997): whereas for weak perturbations the amplitude
of the oscillations in heat release rate is proportional to that in the velocity at the
flame-holder, for finite-amplitude oscillations, this relationship ‘saturates’ when the
flow velocity reverses.

In § 3, we use the kinematic flame model, together with the equations of conserva-
tion of mass, momentum and energy across the flame zone and the duct boundary
conditions, to calculate self-excited oscillations of the flame. That is made tractable by
recognizing as in Dowling (1997) that, while fluctuations in velocity and heat release
are nonlinear, the fractional change in pressure remains small in this low-Mach-
number flow. Therefore the acoustic waves are still linear, although nonlinear effects
must be included in the relationship between the unsteady heat release rate and the
flow velocity. This enables us to calculate the time evolution of the flow in a straight-
forward way. We find that self-excited oscillations occur above a critical fuel–air ratio.
The characteristics of the resulting limit cycles are compared with Langhorne’s (1988)
measurement. Describing function analysis is used in § 4 to highlight the physical
mechanisms that control the limit-cycle amplitude.

2. Development of the flame model
Consider a premixed flame with constant fuel–air ratio burning in a cylindrical

duct, stabilized in the wake of an axisymmetric centre-body as shown in figure 1.
Bloxsidge et al. (1988) investigated the relationship between flow perturbations and
q(x, t), the rate of heat release rate/unit duct length, for such a confined flame. They
generated acoustic waves in the duct at a range of frequencies and measured the
response of the flame to these imposed disturbances. The distribution of the rate of
heat release was determined through measurements of the light emission from C2

radicals. Combustion was found to extend far downstream of the flame-holder and
they observed that the fractional change in heat release rate/unit length at an axial
position x was approximately equal to the change at the flame-holder at an earlier
time. For fluctuations of frequency ω, this statement implies

q̂(x)

q(x)
=
q̂G

qG
e−iωτ(x), (2.1)

where the suffix G refers to flow conditions at x = 0, the location of the flame-
holder or ‘gutter’. The overbar denotes a mean value, and the circumflex the complex
amplitude of disturbances of frequency ω, i.e. q(x, t) = q(x) + Re(q̂(x)eiωt).
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Bloxsidge et al. gave a specific form for the time delay τ(x) and related qG(t) to
the particle velocity in the oncoming flow at the gutter uG(t). Although they give
a complicated expression, as noted by Dowling (1997), in the frequency range of
interest their flame model reduces to

q̂G

qG
=

1

1 + iωτ1

ûG

uG
, (2.2)

where

τ1 = 2πa/uG (2.3)

and a is the radius of the centre-body. The empirical flame model described through
(2.1)–(2.3) was initially derived from data on a stable flame, burning with low
equivalence ratio φ = 0.57 in a low-Mach-number oncoming flow with M1 = 0.08.
However, it has been demonstrated to describe the fluctuations in heat release rate in
the self-excited oscillations that occur at higher fuel–air ratios (Bloxsidge et al. 1988).
Experiments at a range of different flow conditions, including inlet velocities over
four times faster than the initial tests (Macquisten & Dowling 1993), have confirmed
the scaling of τ1 on inlet velocity as in (2.3). Moreover, the flow impedance at the
flame has been altered by changing the inlet geometry (see, for example, Macquisten
& Dowling 1995) to check that the unsteady heat release does indeed depend on
velocity fluctuations as in (2.2) and not on, say, pressure or density.

The flame model in (2.1)–(2.3) has been combined with the linearized equations of
motion and used to predict the self-excited oscillations of a ducted flame. It leads
to results for the susceptibility to instability and for the frequency of oscillation that
have been validated against experimental data for a wide range of flow conditions
(Bloxsidge et al. 1988; Macquisten & Dowling 1993, 1995). It has also been extrap-
olated to form the basis of a prediction scheme for low-frequency oscillations in
the afterburners of aeroengines (Bloxsidge 1987) and currently used in industry. But,
this flame model is, of course, entirely empirical, and has been deduced by simply
expressing experimental results in an appropriate non-dimensional form. Fleifil et al.
(1996) have derived a first-order lag law, similar in form to (2.2), for the unsteady rate
of heat release in a laminar flame in a duct, burning inwards from a ring on the duct
wall. We will extend their approach to a turbulent flame stabilized on a centre-body.

We assume that the flow is axisymmetric and that combustion begins on a surface
whose axial position at radius r is given by x = ξ(r, t) as shown in figure 1. The flame
initiation surface is therefore described by G(x, r, t) = 0, where

G(x, r, t) = x− ξ(r, t). (2.4)

This surface is assumed to propagate normal to itself at constant speed Su relative
to the unburnt fluid, i.e. the surface G = 0 moves in the direction of its normal n
with speed u · n − Su, where u = (u, v) is the unburnt fluid particle velocity and n
points downstream as shown in figure 1. Mathematically this statement is equivalent
to D̃G/Dt = 0, where D̃/Dt denotes a convected derivative with velocity u− Sun:

D̃G

Dt
=
∂G

∂t
+ (u− Sun) · ∇G = 0. (2.5)

After rewriting n = ∇G/|∇G|, we obtain the familiar G-equation (Markstein 1964;
Kerstein, Ashurst & Williams 1988)

∂G

∂t
+ u · ∇G = Su|∇G|. (2.6)
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Substitution for G from (2.4) gives

−∂ξ
∂t

+ u− v ∂ξ
∂r

= Su

(
1 +

(
∂ξ

∂r

)2
)1/2

. (2.7)

An equation of this sort for the location of a flame surface has been used extensively
(see for example Subbaiah 1983; Yang & Culick 1986; and Poinsot & Candel 1988)
and generally requires a numerical solution. The simplification made by Fleifil et al.
was to assume the density change across the flame front to be negligible. Then an
analytical solution can be derived. We make the same assumption but for different
reasons. For the laminar flame, Fleifil et al. consider the fuel–air ratio to be so low
that the overall expansion is negligible. That is not the case for the turbulent flame,
but then the combustion zone is extensive. Bloxsidge et al. detected combustion
continuing at 30 duct radii downstream of the flame-holder, with qG(t) the heat
release rate/duct length near the flame-holder being very small. This suggests that,
for the turbulent flame, we should view the surface G(x, r, t) = 0 as an initiation front,
with negligible density change across it. Combustion continues downstream of this
surface in turbulent flamelets, where fluctuations in heat release lag perturbations at
the initiation surface according to the Bloxsidge et al. form in equation (2.1).

The Bloxsidge empirical form in (2.2) provides further evidence that the overall
density change does not influence the flame dynamics in this initiation region. It
describes a universal function relating fractional changes in the heat release rate qG(t)
and oncoming flow velocity uG(t), that is independent of fuel–air ratio and hence of
density ratio.

When the density change across the surface G(x, r, t) = 0 is negligible, the particle
velocity in (2.7) is given by that in the oncoming flow (uG, 0). Equation (2.7) then
simplifies:

∂ξ

∂t
= uG − Su

(
1 +

(
∂ξ

∂r

)2
)1/2

. (2.8)

In this section we derive a kinematic model of the unsteady heat release. This involves
solving (2.8) to determine the flame location ξ(r, t) for a specified oncoming velocity,
which for simplicity we will assume to be independent of radius, uG(t). Once ξ(r, t) is
known, the instantaneous flame surface area A(t) can be readily calculated, since

A(t) =

∫ b

a

2πr

(
1 +

(
∂ξ

∂r

)2
)1/2

dr, (2.9)

where b is the duct radius. We will take the rate of heat release in the flame spreading
region to be proportional to this instantaneous flame area, i.e.

qG(t) ∝ A(t). (2.10)

2.1. Linear fluctuations

For linear perturbations of frequency ω, we can solve for the flame surface analytically.
Consider an imposed velocity fluctuation of the form, uG(t) = uG + Re(ûGeiωt). We

express the resulting flame surface oscillation in the form ξ(r, t) = ξ(r) + Re(ξ̂(r)eiωt).
Since the flame is attached at the flame-holder,

ξ(a, t) = 0, i.e. ξ(a) = ξ̂(a) = 0. (2.11)
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The mean value of equation (2.8) leads directly to uG = Su(1 + (dξ/dr)2)1/2 which,
after integration and application of the boundary condition (2.11), gives a conical
surface for the mean position of the flame front:

ξ(r) = (r − a)(u2
G − S2

u )1/2/Su. (2.12)

Linearization in the amplitude of the perturbation reduces (2.8) to a first-order

ODE for ξ̂(r):

iωξ̂ = ûG − Sudξ̂

dr

dξ

dr

(
1 +

(
dξ

dr

)2
)−1/2

= ûG − dξ̂

dr

Su

uG
(u2
G − S2

u )1/2, (2.13)

after substitution for ξ(r) from (2.12). Use of an integrating factor makes the solution

of this ODE for ξ̂(r) straightforward, and application of the boundary condition
(2.11) leads to

ξ̂(r) =
ûG

iω

(
1− exp

(−iω(r − a)/Su(1− S2
u /u

2
G)1/2

))
. (2.14)

Any unsteadiness in the oncoming velocity uG(t) forces perturbations to the flame
front which propagate radially outwards from the flame-holder.

The flame area can be calculated by substitution for ξ(r, t) from (2.12) and (2.14)
into (2.9) and integration across the duct. Its mean and complex amplitude are
described by

A = π(b2 − a2)uG/Su (2.15a)

and

Â = ûG
2π(b− a)

iΩSu

(
a− be−iΩ +

b− a
iΩ

(1− e−iΩ)

)
, (2.15b)

where the non-dimensional frequency Ω is given by

Ω = ω(b− a)/Su(1− S2
u /u

2
G)1/2. (2.16)

Finally it follows from (2.10) that

q̂G

qG
=
Â

A
=
ûG

uG
f(Ω), (2.17)

where

f(Ω) =
2

iΩ(a+ b)

(
a− be−iΩ +

b− a
iΩ

(1− e−iΩ)

)
. (2.18)

This kinematic flame model leads to heat release fluctuations that are proportional to
the velocity perturbations in the incoming flow, the constant of proportionality f(Ω)
being a function of frequency, just as in the Bloxsidge et al. empirical form.

For small values Ω, the exponentials in (2.18) can be expanded as a power series.
After some algebra this leads to

f(Ω) ≈ 1

1 + iωτ1 + (iω)2τ1τ3

, (2.19)
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Figure 2. Transfer function between rate of heat release qG(t) and the velocity uG(t) as a function
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second-order lag law, empirical form of Dowling (1997).

where

τ1 =
(2b+ a)(b− a)

3(b+ a)Su(1− S2
u /u

2
G)1/2

and τ3 = τ1

7b2 + 4ab+ a2

4(2b+ a)2
. (2.20)

For small ωτ1, equation (2.19) reduces to the first-order lag law of Bloxsidge et al.
The higher-frequency correction leads to a second-order lag equation as deduced
from empirical considerations by Dowling (1997). The form predicted in (2.17) for the
heat release rate is compared with that derived from experimental data in figure 2.
There is one parameter to be specified in this flame model: the ratio of flame speed
Su to oncoming mean velocity uG. The turbulent flame speed is not known for the
Bloxsidge et al. experiment. Instead we have chosen Su so that τ1 in (2.20) agrees with
the Bloxsidge form in (2.3) for their geometry (b = 2a). This leads to Su = 0.09uG.
The data are based on burning ethylene in an oncoming flow with uG = 37 m s−1. For
such a flow, the ratio Su/uG = 0.09 corresponds to a flame speed Su = 3.6 m s−1. This
is about ten times faster than the laminar flame speed for an equivalence ratio of 0.7
(Abu-Orf & Cant 1996), a reasonable value for a turbulent flame (Catlin, Fairweather
& Ibrahim 1995). It is clear from figure 2 that there is good agreement between this
kinematic flame model and experiment. The magnitude and phase of the transfer
function between heat release and velocity are well matched throughout the range of
the experimental data, 0.5 6 Ω 6 3.2.
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Figure 3. The boundary condition on r = a, (a) uG(t) > Su, ξ(a, t) = 0, ∂ξ/∂r given by (2.21);
(b) uG(t) = Su, ∂ξ/∂r = 0; (c) uG(t) < Su or ξ(a, t) < 0, ∂ξ/∂r = 0.

The kinematic flame model, defined through equations (2.16)–(2.18) and (2.1), can
be used instead of the Bloxsidge et al. empirical form in (2.2) in a linear stability
analysis of a ducted flame. But it is evident from figure 2 that the expressions (2.2)
and (2.17) are so similar that this will not lead to significantly different results from
those presented in Bloxsidge et al. (1988) and Macquisten & Dowling (1993). It does,
however, provide a physical basis for the empirical form.

Equations (2.16) and (2.17) display the important cross-stream length explicitly. It
is b − a, the distance the flame has to spread between the lip of the flame-holder
and the duct wall, that influences the flame-holder, not the flame-holder width as
implied in the Bloxsidge form in (2.3). This has been used when extending the flame
model from a single centre-body to the more complicated geometry of an aeroengine
after-burner with several flame-holders.

For linearized fluctuations then, this kinematic flame model provides a physical
interpretation of an empirical form given by Bloxsidge et al. It also shows how
that form should be changed for burners of different geometries. However, its main
advantage is that it can be extended to describe nonlinear flame motion.

2.2. Nonlinear fluctuations

The perturbations that occur in the self-excited oscillations of a ducted flame are
sufficiently intense that the flow reverses during part of the cycle and the flame
front moves upstream of the flame holder (Langhorne 1988). Then the fluctuations
in velocity u′G(t) are of the same order as the mean and the linearization of § 2.1
is no longer appropriate. The kinematic flame model can be readily extended to
describe flame motion in an oncoming flow in which uG(t) varies significantly. It is
then necessary to solve the PDE in (2.8) numerically and careful consideration must
be given to the appropriate choice of boundary condition.

For linear fluctuations, we assumed that the flame was attached at the flame-holder,
i.e. that ξ(a, t) = 0 (see (2.11)). When this condition is applied, equation (2.8) can be
rearranged to give

Su
∂ξ

∂r
= (u2

G(t)− S2
u )1/2 on r = a, (2.21)

as shown in figure 3(a). This only has a solution when uG(t) > Su. For uG(t) < Su
it is no longer possible for the flame to remain attached at the flame-holder with
ξ(a, t) = 0. We then need to apply a different boundary condition on r = a. For
uG(t) = Su, ∂ξ/∂r = 0 on r = a and the flame-front leaves the flame-holder normally
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as shown in figure 3(b). When uG(t) drops below Su, the flame leaves the flame-holder
and propagates upstream as in figure 3(c). We insist that the flame front at r = a
remains perpendicular to the centre-body all the time it is detached from the end of
the flame-holder. This imposed boundary condition is physically reasonable. In a case
with density differences across the flame front, it is the only boundary condition that
meets the requirements of zero normal velocity on the sidewalls of the flame-holder,
both upstream and downstream of the flame front. This leads to a boundary condition
with some hysteresis:
on r = a

Su
∂ξ

∂r
= (u2

G(t)− S2
u )1/2 for uG(t) > Su and ξ(a, t) = 0,

∂ξ

∂r
= 0 if uG(t) 6 Su or ξ(a, t) < 0.

 (2.22)

For specified forcing uG(t), equation (2.8) can be integrated in time to determine the
evolution of the flame-front.

As an illustrative example, we have perturbed a flame, initially in its equilibrium
position ξ(r) = (r − a)(u2

G − S2
u )1/2/Su, by an unsteady inlet flow uG(t) = uG(1 +

VH(t) sinωt). The results in figure 4 are for V = 1.15, b = 4a, Ω = 2 and Su = 0.09uG.
The flame surface rapidly settles into a periodic oscillation and various phases are
shown in figure 4. In this plotted sequence, the flow velocity uG(t) starts from its
mean value in figure 4(a) and then decreases. Once the instantaneous flow velocity
drops below the flame speed as in (c) the flame begins to move upstream of the
flame-holder. When the flow velocity again exceeds the flame speed, (f), the flame
propagates downstream but there is a convection time delay before it reattaches.
This is seen clearly by a comparison of (b) and (f): the flow velocities are equal at
these times, but the flame has quite different forms. The flame boundary conditions
in (2.22) exhibit hysteresis. By (g) the flame has reattached to the flame-holder.
Reattachment leads to an abrupt change in the slope of the flame surface or ‘necking’,
which subsequently convects downstream. As the oncoming velocity reduces again,
the flame front first propagates outwards towards the duct walls (compare (l) and (b))
before travelling upstream of the flame-holder. The cycle then repeats. Many of the
features of this predicted flame distortion are seen in schlieren films (Jones 1974) and
photographs (Smart et al. 1976) of perturbed flames. In particular, the experiments
clearly show propagation of the flame upstream of the flame-holder. In a similar way,
flame reattachment leads to an abrupt change in the slope of the flame surface, which
is then convected downstream. The propagation of the flame towards the duct walls
(as in (a)–(c)) is also evident as a precursor to flame detachment.

We are particularly interested in the flame surface area because, according to
our model, this is directly related to the rate of heat release. Once ξ(r, t) has been
determined, the flame area can be obtained from (2.9) by numerical integration.
Results for different values of the non-dimensional forcing amplitude are shown in
figure 5. Predictions given in (2.15) from the linearized theory are also shown for
comparison. At low non-dimensional frequencies, the flame area and inlet velocity
are in phase. At higher frequencies, the instantaneous flame area lags the velocity
in agreement with (2.15)–(2.20). Nonlinearity is of a simple form. Indeed for V 6 1,
the instantaneous flame area is well predicted by the linearized solution in § 2.1. For
V > 1, linear theory unphysically predicts a negative flame area during part of the
cycle. In practice, the minimum possible flame area is when the flame is straight
across the duct and is equal to π(b2−a2). We see from figure 5(a) that this is achieved
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Figure 4. Periodic fluctuations in the position of the flame surface for the unsteady inlet flow
uG(t) = uG(1 + VH(t) sin ωt), V = 1.15, b = 4a, Ω = 2 and Su = 0.09uG. The value of ωt − 2πN
increases from −π to π in steps of π/6; a denotes the instantaneous velocity uG(t).

at low frequencies. At higher frequencies, the flame front remains curved resulting in
a larger minimum flame area (see figures 5(b) and 5(c)).

Once the flame area A(t) is known, the rate of heat released within the duct follows
from combining (2.1) and (2.10)

q(x, t)

q(x)
=
qG(t− τ(x))

qG
=
A(t− τ(x))

A
. (2.23)

We have developed a kinematic flame model which describes how fluctuations
in the velocity at the flame-holder lead to unsteadiness in the rate of heat release.
However, fluctuations in heat release generate acoustic waves which in turn cause
upstream velocity fluctuations. There is then the possibility of self-excited oscillations,
which are considered in § 3.
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Figure 5. Phase-space plots of flame area A(t) for uG(t) = uG(1+VH(t) sinωt), b = 2a, Su = 0.09uG;
——–, nonlinear flame model; - - - - - -, linearized form in equation (2.15). (a) Ω = 1, (b) Ω = 2,
(c) Ω = 4.

3. Nonlinear self-excited oscillations of a ducted flame
In this section we first investigate the acoustic waves generated in a duct by

unsteady combustion. These are then combined with the flame model of § 2 to
predict self-excited oscillations. For definiteness we will consider the geometry shown
schematically in figure 6: the flow at the inlet to the working section is choked
and the duct exit is open. This corresponds to Langhorne’s experiment (Langhorne
1988), where above a critical fuel–air ratio the flame is observed to undergo periodic
self-excited oscillations. Linear theories for these self-excited oscillations are well
established (see for example Bloxsidge et al. 1988; Macquisten & Dowling 1993).
They give satisfactory predictions for the susceptibility to instability and for the
frequencies of oscillation. The linearized flame model of § 2.1 could be incorporated
into these linearized theories. However, for the Langhorne geometry, the kinematic
flame model leads to flame transfer functions which are so similar to the empirical
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Figure 6. Schematic diagram of the duct geometry and flow.

form used previously in the linear theory (see figure 2 for the comparison) that this
will not lead to significantly new results. At an unstable operation condition, linear
theory predicts disturbances which grow exponentially with time. In this section, we
will investigate whether the nonlinear flame model of § 2.2 leads to finite-amplitude
limit cycles representative of those observed experimentally.

The frequencies of interest are low, with acoustic wavelengths very long in com-
parison with the duct diameter. Therefore only plane acoustic waves carry energy
and higher-order modes decay exponentially fast with axial distance. In practice,
combustion is distributed along the duct downstream of the flame-holder. However,
since our interest is in focusing on nonlinear effects, we will simplify the heat input
by considering it concentrated over a short axial length. We enclose this burning
region by a control surface, whose axial length may extend several duct diameters
but is short in comparison with the acoustic wavelength. While the flame geometry
and hence the flow within the control volume are two-dimensional as described in § 2,
the acoustic waves outside the control surface revert to being one-dimensional and
couple to the heat release rate integrated throughout the control volume. Considering
the heat release as concentrated in this way and neglecting the rate of change of
mass, momentum and energy of the fluid within the small control volume may lead to
some inaccuracy in the predicted frequency (Dowling 1995), but it makes the analysis
sufficiently tractable to clarify the role of nonlinearities.

The nonlinear form for the instantaneous total rate of heat release follows from
(2.23). We will take it to be given by

Q(t)

Q
=
A(t− τ)
A

. (3.1)

τ represents an average time delay which, to be consistent with the empirical form for
Q(t) in Dowling (1997), we will assume to be equal to 0.4lb/u1, where lb is the length
of duct downstream of the flame-holder and u1 is the mean velocity upstream of the
flame-holder. A(t) is to be solved by integration of (2.8) with the boundary conditions
(2.22) once uG(t) is known.

A common approach when considering nonlinear combustion oscillations is to
expand the flow disturbances as a Galerkin series (Lores & Zinn 1973; Awad &
Culick 1986; Culick 1988, 1994; Margolis 1993; and Wicker, Yoon & Yang 1995).
But instead, we follow the wave-based method of Dowling (1997). This has the
advantage that, after application of the duct boundary conditions, only two time-
varying wave strengths are required to resolve all the plane wave modes of the
duct/flame arrangement. In contrast, an infinite number of time-varying coefficients
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must be determined to obtain this level of resolution from a Galerkin series. The
formulation of the equations for the acoustic waves is the same as in Dowling
(1997), but we will repeat the main steps here for completeness. First we combine
the equations of conservation of mass, momentum and energy flow rates across the
flame zone, x = 0, with the perfect gas equation, to lead to two equations which are
independent of the density and temperature downstream of the burning region. The
momentum equation can be written in the form

[p]2
1 + ρ1u1[u1]

2
1 = 0, (3.2)

where p is the pressure and ρ the density. The suffices 1 and 2 denote flow quantities
just upstream of the flame-holder and downstream of the burning region respectively.
We have neglected any drag on the fluid exerted by the flame-holder, which has
previously been shown only to have a small effect (Dowling 1995, § 4). Use of the
perfect gas equation Tρ = p/R enables the energy equation to be written in the form

γ

γ − 1
[pu]2

1 + ρ1u1

[
1
2
u2
]

=
Q

πb2
, (3.3)

where γ is the ratio of specific heat capacities.
In acoustic waves, p′ ∼ O(u′ρc), where c is the speed of sound. Hence

p′

p
= O(γM)

u′

u
, (3.4)

where M is the mean Mach number. For the low-Mach-number flows in which
the flame will burn, the fractional pressure fluctuation remains small, even when
u′/u ∼ O(1). Since u′ is also much less than c, the acoustic waves can be treated as
linear. Therefore, for the region upstream of the combustion zone, −lu 6 x 6 0, we
can write the flow variables in the form

p(x, t) = p1 + f

(
t− x

c1 + u1

)
+ g

(
t+

x

c1 − u1

)
, (3.5a)

u(x, t) = u1 +
1

ρ1c1

(
f

(
t− x

c1 + u1

)
− g

(
t+

x

c1 − u1

))
, (3.5b)

with

ρ(x, t) = ρ1 +
1

c2
1

(
f

(
t− x

c1 + u1

)
+ g

(
t+

x

c1 − u1

))
; (3.5c)

f and g denote the strength of the downstream- and upstream-propagating acoustic
waves respectively.

As in Langhorne’s (1988) experiments, we consider the inlet flow at x = −lu to be
choked. The mass flow rate there is then constant leading to a simple description of
how an incoming wave is reflected:

f(t) =
1−M1

1 +M1

g(t− τu), (3.6)

where M1 is the mean Mach number upstream of the burning zone and τu =

2b/c1(1−M2

1).
The acoustic waves in the duct downstream of the burning zone are also linear.

Neglecting the influence of the entropy fluctuations on the propagation speed and
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Length of working section upstream of flame zone lu = 1.18 m
Length of working section downstream of flame zone lb = 0.74 m
Diameter of duct 2b = 0.07 m
Diameter of flame-holder 2a = 0.035 m
Flame-holder blockage ratio 25%
Inlet Mach number M1 = 0.08
Inlet stagnation temperature T 01 = 293 K
Equivalence ratio (fuel–air ratio normalized on stochiometric fuel–air ratio) φ = 0.70
Fuel ethylene
Combustion efficiency 0.80

Table 1. Summary of the geometry and mean flow.

impedance of these waves, we obtain

p(x, t) = p2 + h

(
t− x

c2 + u2

)
+ j

(
t+

x

c2 − u2

)
(3.7a)

and

u(x, t) = u2 +
1

ρ2c2

(
h

(
t− x

c2 + u2

)
− j

(
t+

x

c2 − u2

))
(3.7b)

for 0 6 x 6 lb. There are also entropy fluctuations in this downstream region which
may influence density and temperature in a nonlinear way. That is why we have set
out the conservation equations in the form of (3.2) and (3.3), where ρ2 and T2 do
not appear explicitly. Application of the open end boundary condition, p′(lb, t) = 0,
shows that

j(t) = −h(t− τD), (3.8)

where τD = 2lb/c2(1−M2

2).

Substitution of (3.5)–(3.8) into (3.2) and (3.3) leads to two equations relating g(t)
and h(t) to Q(t) and their values at earlier times:

X

(
g(t)

h(t)

)
= Y

(
g(t− τU)

h(t− τD)

)
+

(
0

(Q(t)− Q)/πb2c1

)
, (3.9)

where τU and τD are the times taken for acoustic waves to travel up and down the
regions upstream and downstream of the flame zone respectively. X and Y are 2× 2
matrices, with constant coefficients just involving the mean flow. The full forms of
X and Y are given in the Appendix. Equation (3.9) is identical to (2.17) of Dowling
(1997). However, in that earlier work Q(t) was based on experimental data. Now we
can determine it from the kinematic flame model of § 2.

The time evolution of the flow from specified initial conditions can be determined
in a straightforward way. Let us suppose that the wave strengths g(t) and h(t) and
the flame front position ξ(r, t) are known up until a time t1. Then the flow at the next
time step t1 + ∆t can be calculated by first determining the instantaneous rate of heat
release at time t1 + ∆t from (2.9) and (3.1). The values of g(t1 + ∆t) and h(t1 + ∆t)
then follow from a solution of (3.9). Flow parameters in −lu 6 x 6 0 and 0 6 x 6 lb
can be deduced from (3.5) and (3.7) respectively. In particular, the unsteady velocity
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at the flame-holder which influences the flame motion through (2.8) is given by

uG(t1 + ∆t) =
b2

b2 − a2
u1(t1 + ∆t)

=
b2

b2 − a2

(
u1 +

1

ρ1c1

(
−g(t1 + ∆t) +

1−M1

1 +M1

g(t1 + ∆t− τU)

))
. (3.10)

Finally, the determination of the flow at t1+∆t is completed by integration of the flame
equation (2.8) with respect to time to determine ξ(r, t1 +∆t). In our calculations, ξ(r, t)
was evaluated at 50 locations across the duct radius and a fourth-order Runge–Kutta
scheme was used for the numerical time integration.

Figure 7 shows results for the geometry and mean flow summarized in table 1
(Langhorne’s 1988, Configuration 1). For this geometry and inlet conditions, we find
that linear disturbances are predicted to be unstable at all physically realizable, non-
zero fuel–air ratios. To investigate the effects of nonlinearity, the time integration is
started from an arbitrary initial condition. A periodic, finite-amplitude oscillation is
rapidly established. The fluctuations in pressure, velocity and the rate of heat release
in the limit cycle are shown with an expanded timescale in figure 8 and in phase
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Figure 9. Limit-cycle oscillations in phase space, conditions as in figure 7: (a) uG(t) vs. p(−lu, t), (b)
Q(t) vs. uG(t).

space in figure 9. There is good agreement with the experimental limit cycles reported
by Langhorne (1988). In particular, the flow just reverses during part of the cycle
consistent with the observations. There are large-amplitude variations in the rate of
heat release, with Q(t) being nearly zero for part of each cycle, and in agreement
with measurement (see Langhorne 1988, figure 11). The limit cycles are also similar
to those predicted by Dowling (1997) for the same configuration, using an empirical
saturation model for the unsteady heat release. Now we have a more physical basis
for the flame model.

We have found that realistic limit cycles for self-sustaining oscillations can be
obtained by combining the nonlinear flame model of § 2 with linear acoustics and
integrating in the time domain. In the next section we investigate how the nonlinear
flame model is able to control the limit-cycle amplitude.

4. Describing function analysis
Describing function analysis, as described for example in Ogata (1970), enables

us to develop a quasi-nonlinear theory to estimate the limit-cycle amplitude and
the frequency of oscillation. This approximate theory has two advantages. First it
highlights the physical mechanism by which nonlinearity controls the amplitude of
oscillation. Secondly, it enables the analysis of the duct acoustics to be carried out in
the frequency rather than the time domain. For the geometry in figure 6, the acoustic
waves are reflected in a simple way from the ends of the duct and it is feasible
to analyse these waves in the time domain as in § 3. However, for more practical
combustors, perhaps consisting of multiple supply streams, it is more convenient to
analyse the duct acoustics in the frequency domain (see Macquisten & Dowling 1995).
Describing function analysis enables us to combine frequency-domain calculations
with the nonlinear kinematic flame model.



A kinematic model of a ducted flame 67

For disturbances proportional to eiωt, equation (3.9) leads to(
X − Y

(
e−iωτU 0

0 e−iωτD

))
︸ ︷︷ ︸

M

(
ĝ(ω)

ĥ(ω)

)
=

(
0

Q̂(ω)/πb2c1

)
, (4.1)

where the circumflex denotes a complex amplitude. This can be readily solved to relate

ĝ(ω) and ĥ(ω) to Q̂(ω)/πb2c1. The velocity fluctuation at the flame-holder ûG(ω) then
follows from (3.10) and we write it in the form

ûG(ω)

uG
= G(ω)

Q̂(ω)

Q
(4.2)

with

G(ω) =
Q
(
X12 − Y12 e−iωτD

)
π(b2 − a2)ρ1uGc

2
1 detM

(
1− 1−M1

1 +M1

e−iωτu

)
. (4.3)

The function G(ω) calculated in this way is the transfer function between velocity
fluctuations at the flame-holder and unsteadiness in the rate of heat release. It
essentially accounts for the linear duct acoustics and describes the generation of
acoustic waves by unsteady heat input. It depends on the duct geometry, mean flow
and sound speed. To complete the solution, the nonlinear kinematic flame model
must be used to determine the flame response to ûG(ω).

Consider a harmonic variation in the flow velocity at the flame-holder

uG(t) = uG(1 + V sinωt). (4.4)

The response of the flame to this imposed velocity fluctuation was investigated in § 2.
For example, figures 4 and 5 show the periodic motion of the flame and the change
in flame surface area A(t) for particular values of forcing amplitude V and frequency
ω. In our model the fluctuations in the rate of heat release are related to the flame
area through (3.1):

Q(t) = QA(t− τ)/A, τ = 0.4lb/u1. (4.5)

For nonlinear forcing of the form in (4.4), Q(t) is not harmonic but it is still periodic
of period 2π/ω. Q(t) can therefore be expanded as a Fourier series which we write in
the form

Q(t) =

∞∑
−∞

Q̂ne
inωt,

where

Q̂n =
ω

2π

∫
Q(t)e−inωt dt (4.6)

and the integral is to be evaluated over one period of oscillation.
In § 2.1 we calculated the rate of heat release analytically for linear harmonic

velocity oscillations (V � 1). We note this linear form by a subscript L. Only Q̂L0,
Q̂L1 and Q̂L−1 are non-zero. Q̂L0 is of course just Q, the mean value of Q(t). Q̂L1 can
be calculated from (2.15), (4.5) and (4.6), with the result

Q̂L1

Q
=
ûG

uG
F(ω)e−iωτ, (4.7)

where F(ω) = f(Ω), with Ω = ω(b− a)/Su(1− S2
u /u

2
G)1/2 and f(Ω) is given in (2.18).
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Figure 10. The variation of the complex gain a1(V ,ω) = Q̂L/Q̂L1 with V , (a) magnitude, (b) phase,
conditions as in figure 7.

For nonlinear fluctuations it is convenient to normalize Q̂1 on Q̂L1, the value
from linear theory for the same frequency of velocity fluctuations. We introduce a
normalized complex gain

a1(V ,ω) =
Q̂1

Q̂L1

. (4.8)

a1(V ,ω) may be evaluated by solving numerically for the flame area as in § 2.2 and
using (4.5) and (4.6) to calculate the first Fourier coefficient. Dividing the resulting
Q̂1 by Q̂L1 from (4.7), with ûG from (4.4), leads to a1(V ,ω). Its magnitude and phase
are plotted in figure 10 and we note that they have a particularly simple form. Of
course, from its definition we know that a1(V ,ω) = 1 for small V . However, from
our numerical calculations it emerges that a1(V ) ' 1 for all V 6 1. We noted from
figure 5 that linear theory gives a good approximation to the flame area until flow
reversal occurs. The effects of nonlinearity are particularly simple; a1(V ,ω) is always
effectively real and only has a weak dependence on frequency. For V > 1, a1(V ,ω)
decreases gradually with increasing V , indicating that the nonlinearity is in the form
of a saturation. Once the amplitude of the inlet velocity fluctuations exceeds their
mean value, the velocity becomes negative during part of the cycle, the unsteady
flame area does not change as much (see figure 5) and the amplitude of perturbation
in the rate of heat release is less than predicted from linear theory.

Equations (4.7) and (4.8) lead to

Q̂1

Q
=
ûG

uG
a1(V ,ω)F(ω)e−iωτ. (4.9)

This is the essential step in applying describing function analysis: the response in
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heat release rate due to nonlinear velocity fluctuations has been written in terms of
the product of the linear response and a gain a1(V ,ω). Combining (4.2) and (4.9), we
obtain the characteristic equation for quasi-linear oscillations:

1

a1(V ,ω)
+ F(ω)G(ω)e−iωτ = 0. (4.10)

Oscillations of magnitude uGV grow in time, if this equation has any roots with
Re(iω) > 0, whereas, if all the roots have Re(iω) < 0, the perturbations decrease.

The roots of (4.10) are most conveniently investigated by plotting the Nyquist
curve for F(ω)G(ω)e−iωτ and the locus of −[a1(V ,ω)]−1, 0 6 V 6 ∞. These are
shown in figure 11 for the geometry and flow conditions in table 1. The Nyquist
curve crosses the negative real axis at ωc = 370 rad s−1, where FGe−iωτ = −1.2.
For small V , −[a1(V ,ω)]−1 = −1 which lies to the right of this crossing point.
The Nyquist curve therefore encircles −[a1(V ,ω)]−1. Since there is then an unstable
root, the disturbance grows in magnitude, increasing V and so (from figure 10)
moving −[a1(V ,ω)]−1 to the left. In a similar way, the Nyquist curve shows that any
large-amplitude oscillation with −[a1(V ,ω)]−1 less than −1.2 is stable and decays
in amplitude, moving −[a1(V ,ω)]−1 to the right. The limit-cycle amplitude is the
value of V for which −[a1(V ,ωc)]

−1 = −1.2, where ωc is the frequency at which the
Nyquist curve crosses the negative real axis; ωc corresponds to a non-dimensional
frequency of 2.02, the particular case plotted in figure 10. It follows from figure 10 that
−[a1(1.65, ωc)]

−1 = −1.2. Any disturbance whose amplitude is less than 1.65 grows,
while one whose amplitude V is greater than 1.65 decays: in the limit cycle we must
have V = 1.65. In other words, the limit-cycle amplitude and frequency of oscillation
ω are given by the value of V , which makes ω, the root of equation (4.10), real. In
this example this corresponds to a peak-to-peak velocity fluctuation of 3.1uG in the
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velocity at the flame-holder at a frequency of 58.8 Hz, in excellent agreement with
3.0uG at 57.7 Hz calculated from the full nonlinear theory and shown in figures 8(b)
and 9(a).

For this configuration the ducted flame is linearly unstable because the rate of
acoustic energy gained from the unsteady combustion exceeds that lost at the duct
exit. The energy lost increases in proportion to V 2, but the energy gain does not
grow as rapidly because saturation occurs in the rate of heat release (see figure 10).
The limit cycle corresponds to the amplitude V at which there is an energy balance.
Describing function analysis provides a way of determining that amplitude and the
frequency of the limit-cycle oscillation from a quasi-linear theory.

5. Conclusions
The constant flame speed approach of Fleifil et al. (1996) has been extended to

model the unsteady behaviour of a ducted flame stabilized in the wake of a bluff
centre-body. Of course, such a simplified model does not contain all the details of
the flame dynamics. Nevertheless, important large-scale flow features that couple
to the duct acoustics are reproduced. For linear harmonic velocity fluctuations, the
model has the great advantage that the time variation in the rate of heat release
can be calculated analytically. Moreover, this form is in excellent agreement with
experimental data. For large-amplitude variations in velocity, the predicted flame
front undergoes significant distortion, involving propagation upstream of the flame-
holder, reattachment, and ‘necking’ in which an abrupt change occurs in the slope of
the flame surface and is subsequently convected downstream. All these features are
consistent with previous flow visualizations of the flame.

Self-excited oscillations can be investigated by combining the nonlinear kinematic
flame model with linear duct acoustics. In this approach we have treated the heat
input as concentrated at a single axial plane. This leads to some inaccuracy in the
predicted frequency, but clarifies the role of the nonlinearities. We have concentrated
on Langhorne’s (1988) Configuration 1. For that case, the flow is predicted to be
unstable at all realistic fuel–air ratios. Weak disturbances grow into limit cycles which
reproduce the main experimental observations. Flow reversal is predicted to occur
during part of the cycle and the flame moves upstream of the flame-holder. Although
the velocity and rate of heat release undergo fluctuations of the order of their mean,
the fractional change in the pressure remains small.

Describing function analysis has highlighted the main influence of nonlinearity.
Once the flow velocity reverses, the fluctuation in heat release rate ‘saturates’ leading
to finite-amplitude limit cycles. Through the introduction of a nonlinear gain which
describes this saturation, it is possible to obtain reasonable estimates of the limit-cycle
amplitude and frequency from a quasi-linear theory which can be implemented in the
frequency domain.

Appendix
The full forms of the 2× 2 matrices in equation (3.9) are

X =


−1 +M1

(
2− u2

u2

)
−M2

1

(
1− u2

u1

)
1 +M1

ρ1c1

ρ2c2

1− γM1

γ − 1
+M

2

1 −M2

1(1−M1)
1

2

(
u2

2

u2
1

− 1

)
c2

c1

(1 + γM2)

γ − 1
+M1M2

ρ1

ρ2

 ,
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Y =



1−M1

1 +M1

(
1 +M1

(
2− u2

u1

)
+M

2

1

(
1− u2

u1

))
1−M1

ρ1c1

ρ2c2

1−M1

1 +M1

(
1 + γM1

γ − 1

+ M
2

1 −M2

1(1 +M1)
1

2

(
u2

2

u2
1

− 1

))
−c2

c1

(1− γM2)

γ − 1
−M1M2

ρ1

ρ2


.
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